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THE BAYESIAN INVENTORY PROBLEM

Chapter 1. INTRODUCTION

1.1 Background.

Our oLjective is to improve the management of repair parts for newly

fielded weapon systems. The initial procurement of each part is made a lead

time before the system is fielded, and is based on an engineering estimate

of the mean part demaud rate per fielded system. There may be additional

procurements before the fielding date. Once the system is fielded, demand

experience accrues and is used to update the forecast of the demand rate,

improving its accuracy.

Inventories are managed under a periodic review, (s,S) policy:

when assets fall to s, order up to S. The period is as small as one week.

The issue of concern is how the expected improvement in accuracy of the demand

forecast should affect the values of the inventory control parameters.

Formally, we are seeking to determine optimum (s,S) parameters

- they change each period - when there is Bayesian updating, periodic review

and a dynamic mean with demand randomly distributed about the mean. It has

long been known that this problem can be solved by dynamic programming, Cf.

[I1] . However, in the general case a multi-dimensional state vector is required,

and the dynamic programming formulation has not been pursued. Thus Kaplan

and Kruse unsuccessfully solicited interest in designing a computationally

feasible algorithm [91. In fact we have not even found useful qualitative

conclusions about the Bayesian solution in the general case.

Instead, the literature has focused on the specific situation in

which there is no cost to order so that the purchase price is simply (Unit

Price) x (amount ordered). In this c se several interesting results have

been obtained:

a. Optimum solutions are well behaved in that if "t" is a sufficient

statistic for the demand experienced to date, the optimum policy is to order

each period up to the optimum S value for that period, and for a given period

S is a non-decreasing function of "t".

b. If the distribution of demand, conditional on "t", has certain

properties, the optimum solution may be found by solving a dynamic program

with only a single dimensional state vector. For example, if the conditional



distribution is Weibull:

f(x;w) - wk(xw)k - l exp[-xw] k  X and

the prior on w given "t" is Gamma, then only a single dimensional state vector

is required.

These results were tirst obtained by Scari 111,12] and are reviewed

and extended by Azoury Ill.

Efforts have also been made to determine how Bayesian solutions

relate to non-Bayesian solutions. Thus, Scarf looked at how the Bayes solution

asymptotically approached the non-Bayes solution with increasing experience,

(again with no cost to order), and found that the Bayes S values could approach

from above or below the non-Bayes S values. However, Azoury and Miller do

bhow, for an n period model for repairable items, that the Bayes S is alwayE

less than or equal to the non-Bayes S [2]. Again, they assume no cost to

order.

The purpose of this research is to explore the feasibility of the

dynamic programming formulation as a basis for a computer algorithm, and

to obtain some insight into the impact and significance of uncertainty about

the demand rate.

1.2 Model.

A difficulty arose in formulating a model for newly fielded weapon sys-

tems,i.e. for the "provisioning" phase of repair part support, in that no

rigorous model for managing inventories after provisioning, when the demand

forecast stops improving, really exists! Few if any real world inventory

systems forecast demand as the average of all the historical demand ever

received; rather, some form of moving average, exponential smoothing or related

technique is used. Thus, the forecast cannot even asymptotically approach

the true mean so long as demand variability does not diminish; yet, there

is no practical model we .'re familiar with which rigorously deals with the

fact that the demand forecast is neither the true mean nor approaches it.

Students at the University of North Carolina under Harvey Wagner have been

inLerested in the problem and Ehrhardt has developed a "power" approximation

which is more robust to the use of estimated means and variances than the

more rigorous computations which assume the mean and variance are known

[5]. Some promising recent work of Miller 1101 attacks a related problem

theoretically - he requires the forecast, derived by exponential .moothing,

6



to be the true mean, but allows this mean to change stochastically each period.

Developing a rigorous post-provisioning model would be a major

undertaking in its own right. As an alternative, we assume that at some

future period, period "M", updating of the inventory control parameters ceases.

While unrealistic, th ,s assumption captures the reality that even after provi-

sioning, the (s,S) parameters will not reflect knowledge of the true mean.

The dynamic programming formulation can quite easily handle non-sta-'

tionarities; these may be due to changes in cost and related parameters such

as an obsolescence rate, which- is-high only until weapon design stabilizes,

or non-stationarity may reflect changes in demand per period as the number

of fielded weapon systems increases. The heuristic used to model expected

costs after period "M" cannot handle these dynamic changes and is therefore

limiting. We will discuss later how this might be overcome under the "alterna-

tive formulation" of the dynamic programming approach.

The standard dynamic programming formulation limits the choice

of demand distributions to those for which a sufficient statistic exists

for the mean. Moreover, practicality pretty much limits choice of the prior

to the conjugate distribution (Appendix A reviews sufficient statistics and

conjugate distributions). We discuss an alternative formulation which allows

any demand distribution but has these disadvantages: the prior must be expressed

as a discrete histogramI and it is more time consuming to run on a computer.

The cost structure allowed in the dynamic programming formulation

is quite general, but the heuristic used to model costs after period "M"

does require a discount rate. For readers unfamiliar with the discount rate

concept and its application to treatment of interest ratec and obsolescence

the paper on multi-year holding costs is recommended [6]. In brief, use

of a discount rate is crucial to cost analysis when inventories may be held

for many years, as is possible when buys are made based on forecasts which

may be much too high. If i is the interest rate, per period, and e is the

probability of obsolescence in a period, the one period discount is (l-e)/(l+i),

where i/(l+i) is the present value and (l-e) is the probability the item

can incur demand (it is not obsolete).

/
'By this we mean a discrete distribution with a limited number of points with
positive probability, and in which it may not be possible to express the
probabilities other than by enumeration.

7



1.3 Organization of Report.

Both the "standard" dynamic programl.iing lormulation based on a sufficient

statistic and the alternative iormulation bsscd on a histogran prior are

presented. Issues in moving ft-m formulation to algorithm are discussed.

Starting the dynamic progranming recursion ih the r.ost difficult issue and

j receives an extensive treatment.

An algori'thui based on the standlard foridulation was programmed and

applied to a simple experimental design. iRetulL! are presented and conclusions

-Are drawn. j

•I

41
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Chapter 2. DYNAMIC PROGRAMMING FORMULATION

2.1 Recursive Equation.

A periodic review inventory policy is assumed. The sequence of events

in a period is assumed to be: receive demand, debiting "seets accordingly,

record holding or backorder costs based on current on hand; receive delivery

of inventory ordered a lead t imc (I) ago; order new inventory if warranted.

While the assumcd sequence of events within a period is arbitrary, the formulation

could be adjusted to accormiodate any other assumed sequence.

Inventory ordered at period n does not affect on hand, and therefore

backorder and holding costs in the interval [u,n+L]. Therefore, in developing

an inventory policy for period n, we do not need to include those coats in

our cost expression.

Define Cn(X,L n ) as the txpected value of the present value of all

future costs 4t period n, omitting backorder and holding costs in in,n+L].
fix" ar, assets just before ordering, and demand experience is summarized

by the sufficient statistic "t". Implicit is the use of a particular inventory

policy for deciding what to order in period n and thereafter; e.g. the policy

may be to minimize costs.

Then *

C(X ,tn) = fl(Y-X) + f2(Yitn) + aE Cn 1 [y-d,f3(tnd)] f4 (dltn)
d

(2.1)
y -Z f 5(X,tn)

where:

y: assets after ordering in period n.

fl(z): cost of ordering z units of inventory.

f 2 (ylt 0 ): expected value of the present value of backorders and holding

costs in period kn+L+i) given inventory at the end of the current period

of y, and future demand whose distribution is conditional on tn, as well

aS uo thiv orl6inal prior on the demand distribution.

a: the discount rate which accounts for the time value of ,oney and

the pobsibiliLty of obsolescence.

d: demand in period nfl.

f 3 (Ln d): the function for recomputing the sufficient statistic after

one additional period has elapsed and demand of d has occurred. Typically,

but not always, tn is the 2 dineisional vector (n, sum of demands to date)

9
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so f 3 (tn~d) I tn + the vector l,d). If demand is uniform, t n would be (n,

maximum demand in any period experienced)14i.

f 4(dItn)" probability function for demand given tn
fb(z;tn): A mapping from, (x~t n ) to y reflecting the inventory policy,

where y may equal x. If the objective is solely to minimize costs, then

y is found as the value which when substituted into the RHS (right hand side)

of equation (2.1) minimizes Cn (X,tn).

Note that to handle non-stationarities, a subscript of n would

be appended to f1, f2, a, f 3 , f 4 where fl, would mean ordering cost parameters

are time dependent, f2n would reflect time dependency of backorder, holding

or discount parameters, and f3n and f4n would reflect the need to incorporate

the number of systems fielded in every period. For the first L periods before

any system ia fielded, f 4 (ditn) is always 0 for d > 0.

2.2 Use of Recursive Eouation in an Aliorithm,

The major problem is how to get Cn+l(" , ) for some n in order to start

the iterative process by which C, (",) can eventually be determined. Period

zero represents the present, at -hich a decision must be made. As discussed

i, Lhe iiLtodiction, our effortb are devoted to deLermiring CM(' ), M being

when updating of tle inventory control parameters ceases. An entire sectiob

will be devoted to this.

The next problem is that there is no natural upper bound on the

demand which may be received, so some kind of truncation is necessary. Truncation

arises in three distinct contexts:

a. Truncation on demand received in period n + 1 (the d values

in the recursive equation).

b. Truncation on total dcmand in the next (L+l) periods, used

in getting f2(Yltn) .

c. Truncation on thr values of t n,. In particular, where tn is

the vector (nDn) , Dn being total experienced demand in the first n periods,

we are referring to truncation -)n possible values of Dn .

The single period (one week) demand values were truncated at a

cuiul tive probability of I - 10-4; i.e., the Nalue k was found such that:

k
Z f 4 (dltn) > 1 - 10
d-O

10
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and then f4 (kltn) was reset-

k
f4 (klt n) - Z f 4 (dlt )

Lead time demand was truncated at a cumulative probability of 1 - 10

These truncation values were subjectively chosen.

Now let Lmax be the maximum value of the sufficient statistic
n

"t" considered in period n end let dnma be the single period demand maximum

in period n+l, based on f (d tmax). It would be natural to set a x
plu te I veltor( ln+ 1  tn

puax )t However, based on a kind of bootstrap mechanism
n+1 max

at work, as n increased, tn  would tend to increase out of control, with

the state space, the values of (x,l ) to be evaluated, getting out of hand.
maxI

Moreover, the probability of values as large as such a tn  actually occurring

on a real item would get increasingly small as n increased.

Therefore, let PMEA. and PSDEVn be the mean and standard deviation

of demand over n periods calculated using the original prior, before any

updating. Set: max = n PHEAN + 4 * PSDEV
tn [n MAN+4* E n)

where the value 4 was chosen after some experimentation on the sensitivity

of results to this value (see Appendix C). Truncate single period demand
max

as necessary so as not to violate the upper bound on (the truncation
maxof lead time demand is not affected.) We are excluding values of tm a which

can occur only with very small probability, although if our initial knowledge

about the true mean is poor, PSDEV vill be large and tma x will be large. Also,n n

t m ax does increase with n.n
One might ask how we limit the values of assets, x, to consider.

The maximum x would be the largest order up to value,* S, for any 1a1 . The
n

current computer program makes a very conservative guess on what this will

be, and issues a warning if this guess proves to be too low.

The remaining issue relating to use of the recursion equation is

whether to assume any particular form for the inventory policy. It is perfectly

feasible to find the optimum y for each (x, t ) vector, which we will label

y (xtn). Such answers, however, are not nearly as convenient to work with

as the optimum values for an (s,S) policy since potentially we need to record
*

a different y for each (x,tn) whereas the (s,S) parameters, by definition,

are independent of x.

11



An interesting question is just what can we say theoretically about

the y (Xtn). We assume order cost is of the form Cp + (UP)(y-x) and is

zero for y - x.

Claim

If x < y ot n

x < y (x,t)

Then y (x,t n ) - y (o,t n )

Internretation

The optimum order-up-to level when assets are 0, y (o,t),

will also be the optimum order-up-to level when assets are x, for all

xCy (o,tn) at which it is worthwhile to place an order.

Let Vn (x;y,t n ) be the value of Cn (x;t n ) if the amount y-x

is ordered in period n. For convenience drop the tn argument.

By inspection of the recursion equation, (2.1), Vn(x 1 ;Y) -

Vnxiy) + (UP)(x2-x for all values of X such that y > xl, x Hence
2 1* xx 2  x1  2.

Vn (oy (x)] - Vn [x, y (x)] (UO(X)

Vn[Oy (o)) - V [x, y (o)] (UP)(x)
n

Also, by definition of y (o)

Vno,y (X)] - Vn[o,y (o)] >_ 0

Adding the second and third equation,

Vn[o,y (x)) - VU x,y (o)) > (UP)(x)

Subtracting this from the first equation,

Vntxy (o)] - Vn[xy (x)J < 0

Q.E.D.

The methodology for determining (s,S) values in the algorithm is

therefore:

a. Find y (o,t n ) and set S - y (o,t n )

b. Find the smallest x such that y (x,tn ) - x and set

e f x - 1. It is easy to check that y (S,t n ) - S and thus a < S.

Since it has never been shown an (sS) policy is optimal, there ii no assurance

there is not some x greater than the o identified for which it would decrease

costs to order.

2.3 Alternative Formulation.

If the prior is expressed in the form of a histogram it is always possible

to use dynamic programming as an evaluator of some given policy. If, in

12



addition, we restrict the set of policies to those which are based on the

total demand experienced to date, and do not consider the period to period

pattern of demand, then dynamic programming can be used to find the optimum

policy or optimum C,S) policy. The technique does not depend on any assumption

about what the demand distribution is, but has computational disadvantages

compared to the sufficient statistic approach.

We will first show how to write the recursion equation, (2.1),

in a different way, one which is more readily generalized to our current

as sumpt ions. Let C' (y;t n ) - note the prime - represent expected future

discounted costs -.hen assets are y after the order ia placed in period n.

From the definition of f 5 (x,tn) if assets after ordering in period n are

y, then assets after ordering in period n + 1, given that demand of d occurs,

are:

f 5[Y-d, f 3(t nod)

Thus,

C" (y;t) f2 (yt n ) + a Z f 4(dIt)(Expression) (2.2)n n 2d
d

Expression = fI{f 5[y-d,f 3 (tn, d)] - (y-d)}

+ Cnl {f5 [Y-d' f3 [t nd)] ; f (t d )

n+1 3 n3 noI

To generalize this to a histogram prior, let i be the set of

possible mean demand rates; let f6 (i;tn) be the probability of i after observ-

ing t where t is the 2-dimensional vector (n, total demand); and let C'(y;t ,i)

be the cost conditional on what the true mean demand rate is. It is C'(y;t n,i)

we calculate recursi'e1y'r

C' (y;trfi) fjy;i) + a Z f4 (d;i)(Expression) (2.3)
d

Expression f (t5 [y-d,f 3 (tn.d)] - (y-d)}

+ Cn+ 1 {f[Y-d, f3(td)]; f3(t ,d), i}
n1 5 3 n 3 n '

For purposes of finding (s,S) values, we set:

Cn (y;t n) Z f6 (i;tn) C. (Y;tn.i)

i

and use the Cn  (y;tn);e.g. we set S to y which minimizes (UP)(y) +

Cn (y;t n )
n nl

The histogram form of the recursion has the obvious computational

disadvantage of requiring values of Cn for each i. An important advantage

13
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is that the number of probability distributions which must be calculated

depends on the number of histogram points rather than on tbe number of values

of t

14



Chapter 3. STARTING THE RECURSION

We wish to determine values of CM(x,tM) over the range of (x,tM),

assuming that the (s,S) values are not updated after period M.

Our approach relies on being able to approximate the priors at

period M (there is a different prior for each value of tM ) by histograms.

Other simplifications were made which while not essential, simplified coding

and reduced running times. Before reviewing these, let us make several obser-

vations in support of the belief that the details of the approach are not

critical.

a. The primary purpose of this research or any implemented algorithm

would be to improve the decisions made before or around the time of fielding

when uncertainty is greatest. Intuitively, because of discounting, the impact

of the values CM(" , I on the values Cn , ), M > n, must decrease as the

time between M and n increases.

b. The decisions made at period n do not depend on the absolute

values of Cn(-,.), but the relative values, i.e., Cn(Otn) - Cn(xtn), and

therefore depend only on the relative costs at period M. Inspection of the

recursion equation shows that the decrease in cost for x assets, relative

to 0 assets, for x < s, is always (up)(x).

c. The impact of non-optimal (s,S) values at period M on the relative

costs associated with different asset levels at period M is likely to be

a second order effect. The primary effect would )e to overstate somewhat

the costs which mLst be incurred for all values of starting assets, and even

then it is frequently found in inventory modelling that costs are flat in

the region of optimality.

3.1 Simplification.

We calculate the reorder quantity (S minus s) without regard to its

impact on backorders, then calculate s. rather than jointly optimizing s,S.

We also assume that when an order is placed, assets are exactly "s"; and

we also assume when it is convenient to do so, that backorder and holding

costs are recorded whenever the asset level changes, rather than only at

the end of the period. With a review period of only one week, these simplifi-

cations are not unrea3onable, but the assumption that we can order at exactly
Is" would be inadequate for items characterized by low frequency of demand,

but large requisition sizes [7].

15



3.2 Notatiog,
L(s,S;i): expected lifetime costs including backorder costs when the

mean demand rate is i, an (s,S) policy is followed and assets

of a are initially on hand and zero are due-in.

B(x;pi): expected backorder and holding costs, respectively

(x;p,i: over the next p periods when the mean demand rate is i, initial

on hand is x, and there will be no additional stock arriving

during the p periods.

f6(i,tM): as earlier, probability the true demand rate is i; the tM
subscript will be dropped in this section.

f 7 (P;x,i): probability mass function on the number of periods to accumulate

demand > x units, given a mean demand rate of i.

G(x;i): EaPf7(p;x,i) where a is the discount rate
P

C p fixed cost to order

Q: the order quantity, S minus s

Cost(Q;i): expected lifetime ordering and holding costs, but not backorder

costs, for initial assets of 0, given i, and assuming Q is

ordered whenever assets are zero.

3.3 Determination of (S-s):

Minimize E f 6 (1) Cost (Q;i)

Q

Cost (Q;I) C + (up)(Q) + [!(Q;-,i) - H(Q;L,i)]

+ G(Q;i) Cost (Q;i)

{C + (up) Q + H (Q;-,i) - H(Q;Li)]/[I-G(Q;i))

In the expression for holding cost, H(Q;-,i) is total lifetime

holding cost on the Q units assuming instantaneous delivery, from which costs

over the first L periods, H(Q;L,i) are subtracted, since the Q units are
still on order then.

G(Q;i) is the expected value of the present value of spending one

dollar, given that the dollar will be spent after Q units are demanded.

If the item survives that long, i.e., it does not become obsolete before

then, expected costs from that point on are Cost(Q;i) again. I
16
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3.4 Determination of a.

The cost of a policy cannot be defined independently of the current

asset position. The s chosen is the smallest s such that it is as good or

better to use an (s,s+Q) policy rather than an (s+l, s+Q+l) policy, given

assets of &+I. It is assumed for convenience all s+l assets are on hand,

but the cost difference between any two policies is independent of the status

of assets - on hand or on order - since policy decisions cannot affect backorder

or holding costs for a leod time.

We wish to find the lowest s for which A(s) is > o, where:

A(s) - E f6 (1) [LI(i) - L2(i)]
i

L (i) -E L(s+1, s+Q+l;i) - H(s+l;-,i)

L2 () - G(l;i) [L(s,s+Q;i) - H(s;a=,i)]

Both Ll(M) and L2 (i) exclude holding cost on the initial s+l assets. In

the case of L 2 (1), holding cost until the first demand - at which time assets

fall to a - are never charged, so only the remaining costs need to be netted

out. The use of G(l;i) discounts back to the initial time when assets were
(s+l).

Computation of L(s.s+O.i).

In the computation of the Cost(Q;i) we saw a renewal process at

work in that if the item survived, free of obsolescence, until Q demands

were incurred, expected costs fron. that point equalled expected costs fron'

the original starting point. We can take advantage of the same logic if

we exclude holding cost on the initial s assets, defining:

L'(s,s+Q;i) = L(s,s+Q;i) - l1(s;-,i)

Just as we will associate with each order of Q the incremental

holding costs caused by ordering those Q units, we can associate the incremental

backorder cost caused by backorders which will be eliminated by these Q units;

every backorder is eventually eliminated by a due-in, so if we associate

the backorder and the due-ir which elimiuates it, we will account for every

backorder, but never double count.

17
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Thus:

L'(ss+Q;i) - Cp + (up) Q + H (Q) + B (q) + C (Q;i) L'(s,s,+Q;i)

where H(Q) is the incremental holding cost caused by ordering the Q units

and B(Q) is a backorder computation to be described.

Note first that

H(Q) - [H(s+Q;-,i) - H(s;-,i)] - [H(s+Q;L,i) - H(s;L,i)]

where the first term in brackets is the added cost assuming instantaneous

delivery, and the second term corrects for the lead time.

Also:

B(Q) - B(s;Li) - B(s+Q;L,i)

We are netting out those backorders, the B(s+O;L,i), which would occur even

if all Q units were delivered instantaneously. These backorders will be

eliminated by some subsequent orders and will be associated with them.

Summarizing

L(s,s+Q;i) - L'(s,s+Q;i) + H(s;a,i)

L'(s,s+Q;i) [ [p + (up) Q + H (Q) + B (Q)]I[l - G(Q;i)]

H(Q) = [H(s+Q;.,i) - H(s;.,i)] - [H(s+Q;L,i) - H(s;Li)]

B(Q) - B(s;Li) - B(&+,Q;L,i)

3.5 Cowutgtion of C i(x.t M.

Given the form of the recursion equation, (2.1), all backorder and holding

costs in [M, M+L] are accounted for by use of the f2 (Y1tn) in periods (M-L)

thru (M-i). Therefore, the CM(x,tM) represent the expected value of all

costs after period M, net of backorder and holding costs i. [M+I, M+L].

The computation makes uses of the L(s,S ;i) with appropriate netting out.

It is assumed the x assets referenced by C M(X,tM) are all on hand, but this

is for convenience only since it is only holding and backorder costs in [M,M+LJ

which are affected by the status of the x units, and the final answer does

not reflect these costs.

18
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C laim.

CM(S;t M ) - CM(s;tN) + (up)(s-x) for x < s (3.5a)

CM(s;t') F f6 (i;tM) {L(s,S;i) - b(s;L,i) - H(s;L,i)} (3.5b)
i

CM(x; tlM) .E f6(i;tM) [TI(i) + T for x > s (3.5c)
6. 2() -4

T(i) = C(x-s;i) [L(s,S;i) - H(s;-,i)]

T2 i) = 11(x;-,i) - H(x;L,i) - B(x;L,i)
2

Explanation. The equations follow almost entirely from the same

arguments we have been making throughout this and earlier sections. The

logic underlying (a) was used in the proof of the lemma on the properties

of the optimum inventory control parameters. Equation (b) is a special case A

of (c).

TI Ci) represents the expected value of the present value of all

future costs, net of all holding costs on the initial x units. The approach

to holding cost is suppoited by the same logic k nderlying the derivation

of L2(i) in the sub-section on determination ot s. Since the x units are

initially on hand, no backorders can occur in the time interval until assets

fall to s, so li(i) includes all backorder costs. L(s,S;i) discounts them

d back to the time when assets first fall to s, and G(x-s;i) discounts ther.1

further back to period M.

T2 (i) adds back in the holding cost on the initial assets which

is incurred after period 11+L, and subtracts out backorders in [M,M+LI.

3.6 More General Formulations.

Suppose nhat updating o(. tht demand forecast ceases after period

M, but non-stationarity persists in that additional weapon systems are fielded.

We may identify a period M2 , H42 > M, after' which we are willing

to assume conditions siabilize. If we choose 12 large enough, it will make

little difference what we assume, because discounting will minimize the impact

on our current decisio(is, and w., may- use ai very crude 3cheme for evaluating

the worth of aisets at M2 r -lative to 0 assets.
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Under the histogram, approach for periods 'M2 1n > M, referring to

equation (2.3),

C; (Y;tMsi) - f2 (y;i) + a Z f 4(d; )  (Expression)

d

Expression fl[f (y-d,tM) - (y-d)] + C'+l [f5 (y-d,tM) );tMti]

Note that in accordance with our assumption the sufficient statistic is not

updated. Because of this it is more feasible to extend the dynamic programming

to the additional interval [M,M 2 I. If tM must 1,v updated, tma x will continue
n

to Prow as n increases past M (recall discussions on truncation) and the

number of states which must be evaluated will continue to grow, although

interpolation may be possible (see Appendix C).

Under the sufficient statistic approach (equation 2.2), we must

Wr ite:

Cn (Y;tN~t) ' f2 (Y;t n ) + a F f4(dlt) (Expression)
d

Expression = fl f5(y-d,tM) - y-d] + C' [f5(Y-d,tM) ;tM, t15 Mn+1 5Mn]

In particular, the sufficient Statistic must. be updated since it determines

the distribution of future demands. If we set f4(dltn) f 4 (dltM,) for all

n > M, we are ignoring the correlation between demand in successive periods,

i.e., if demand in M+I is large, this makes it more likely demand in M+2

will be large since it is more likely the true mean is higher than the mean

imulied by f 4 (d ItM).
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Chapter 4. MODEL RESULTS

4.1 Inputs and Assumptions.

The model was run for a number of different examples to get a feel for

how uncertainty affects the optimum (s,S) values, and what the cost implications

of ignoring uncertainty are.

All examples were set in the provisioning context in that there

was no demand for the first lead time before fielding. To simplify the inter-

pretation, it was assumed that full deployment occurred at the fielding date,

so that once demand began it occurred at a constant mean rate per period.

The prior on the mean was assumed to be Gamma, and the distribution of demand

was assumed to be Poisson. The mathematics for these specific distributions,

including how to update the prior when deployment is increasing, is given

in Appendix B.

Other assumptions were that the review period was one week and

that updating of the (s,S) values ceased after one year. In all cases the

cost to procure was $450 and the discount rate was 80 percent for one year1/52
and therefore .80 for one week. No holding cost was charged since estimates

for US Army wholesale inventories are only 3%, and ignoring holding costs

simplified the coding of the algorithm. The discount rate reflects interest

and obsolescence costs which are significant.

A simple experimental design was used. A base case was defined

as:

Procurement Lead Time in Weeks (L) 52.

Unit Price (UP): $1400.

Average Yearly Demand, i.e. Mean of the Prior (AYD) 10.

Each of these variables was then varied, one at a time, to two other settings:

L of 26 or 78, UP of $350 or $5600, AYD of 5 or 20. For example, one case

run was for L = 26, UP = 1400, AYD = 10.

Each case was run for three uncertainty levels as measured by the

coefficient of variation (Y): the ratio of the standard deviation of the

prior to its mean. This ratio is independent of the period of time to which

the prior is applied, whether it be the prior on mean demand for one week-6
or one year (Appendix B). Uncertainty settings used were 10 (essentially

no uncertainty), 0.5 and 1.0.

Each case was also run for at least two different levels of backorder

cost. For steady state models without discounting, for which the holding
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cost includes interest and obsolescence costs, there is a relationship between

the degree of protection afforded by the optimum reorder point and the ratio

of backorder cost to holding costs, so that it is more informative to report

this ratio than the specific value of the backorder cost. In our model holding

cost in a sense is the complement of the discount rate, i.e., 20 percent,

and all backorder costs are discounted back to the period for which the (s,S)

values are being determined. This motivated us to define a backorder ratio

(BR) and report this value, where for a discount of 80 percent,

.8L/52
(Backorder Cost] . (BR)(UP)(.20)

The base case was run for BR values of 4, 10, 100, 500 and all other cases

were run with BR values of 10 and 100.

4.2 Findings.

Table I shows the optimum (s,Q) values at time of fielding where Q is

defined as S minus s. Thus, for the case where lead time differs from the

base case and equals 78, BR = 100 and Y = 1/2, the optimum reorder point (s)

is 26 and the optimum reorder quantity (Q) is 7.

Let us first say something about the results for when there is

no uncertainty, y = 0. There is some tendency for Q values to decrease as

BR increases; while not very intuitive, this is characteristic of stationary,

undiscounted models with certainty [8]. Otherwise Q's behavior is intuitive,

and so is that of s, which increases with BR, L and UP, the last because

higher UP results in lower Q's.

Uncertainty had relatively little impact on Q for Y = 0.5; and

when Q values were lower, s values, with one exception, were higher (the

exception was for AYD of 5 and BR of 10). For Y = 1, Q declined in all

cases, but showed less sensitivity to BR than under certainty.

The impact of uncertainty on s depended on BR and y . For lower

values of BR, s decreased, while for higher values s increased (for y = .5)

or the discrepancy between certain and uncertain values narrowed (for y =

1.0). For a very high BR of 500, s increased significantly even for Y =

1.

Intuitively, uncertainty suggests lower values of s in order to

hedge until more is known, but at the same time with uncertainty higher s

values are generally needed to get the same protection. Backup Table 1 offers

insight into how this tradeoff is apparently working to determine the s values.
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Reported for each case are the probability that demand in the first (L+I)

weeks will exceed the s vaiue found to be optimal at time of fielding, with

the probability accounting for uncertainty as to the true mean as well as

variance of demand around the mean. With two minor exceptions (L:26, BR:100,

y .5 and AYD:5, BR:l0, Y= .5), less protection was provided by the optimum

s as uncertainty increased, even in cases where the optimum s upon which

the calculations were based was higher for uncertainty than for certainty.

Table 2 shows the pre-fielding pattern of buys for each case.

For example, for the case (L:78, BR:l0, Y:0) the first buy was for 6, a second

buy was made at period (-49), or 49 weeks before fielding, increasing on-order

to 14, and a third buy at period (-13) increased on order to 22. The first

buy is always made L weeks before fielding.

In every ciese for which BR was 100, the optimum amount on order

increased monotonically as a function of Y , for all pre-fielding periods.

For example, comparing y = 0 and Y 1.0, for the base case, the optimum

initial order is 12 versus 9, and on-order is increased to 29 at (-34) versus

to only 17 at (-25); (-25) is 9 periods after (-34). Results are more mixed

at BR = 10, but clearly there is a greater tendency to react to uncertainty

by increasing buys before fielding than there is after fielding.

The explanation is that hedging - buying less and waiting for more

information - is a more viable strategy after fielding than pre-fielding.

After fielding new information becomes available each week, while during

pre-fielding nothing is learned until demand begins. To support this theory

we show below the optimum s values from period (-52) thru period (-I) for

the case (Base, BR:100, y = 1.0) and we observe that the largest s value

of 25 actually occurs before fielding, and then the optimum s start to decline

as hedging becomes more viable:

Periods (-52) thru (-24): optimum a increase from 0 to 25

Periods (-24) thru (-14): optimum s stays at 25

Periods (-14) thru (-1): optimum a declines from 25 to 17

Incidentally, the pre-fielding buys for this case were inferred as follows:

at --52) optimum S was 12; s first increased to 12 at period (-34), requiring

another buy then.

As further corroboration of the importance of hedging a special

run was made of the same (Base, BR:I00, Y :1.0) case we have been examining.

In this run (s,S) values were fixed at (15,20) for periods 1 thru 13. In

23



the original run for this case (15,20) was optimum for period 0 and subsequent

(s,S) values depended on the demand experienced. Now, without the flexibility

to revise (e,S) for periods I thru 13, the optimum (s,S) values found for

period 0 were (28,32).

We have observed that the impact of uncertainty on the optimum

(s,S) values depends on a number of factors including the backorder cost,

amount of uncertainty, time until fielding. It would be difficult to imagine

a simple heuristic which takes a'l these factors into account, so it is of

some interest to determine the cost of using a heuristic which ignores the

impact of uncertainty. Such a policy is described in Appendix D.

Table 3 shows the cost increase when this heuristic is used as

the pre-fielding policy. Cost increases are expressed as a percent of the

total expected lifetime cost under an optimum policy. Since the heuristic

is used only through period 0, but the costs reported are lifetime, the costs

increases reported tend to minimize the adverse impact of the heuristic.

Nevertheless it is cl. ar that ignoring uncertainty may be feasible for lower

values of backorder cost but. is costly for higher values.

4.3 Sumnary.

The demand forecasting techniques used for real world inventory problems

suggest that the mean demand is not known with certainty, and in fact is

subject to change. This paper addresses uncertainty without ever really

coming to grips with the possibility of mean changes. Nevertheless, the

results should contribute to the formulation of improved policies for the

early stages of an item's life, when uncertainty diminishes as the basis

of forecast changes from pre-fielding estimates to actual demand experience.

Two variants of a dynamic programming approach of the problem were

considered; one requires the existence of a sufficient statistic for the

mean, and the other requires that the prior be specified as a histogram. The

sufficient statistic approach was explored in depth and results were obtained

which provide insight into how uncertainty and learning impact on the optimum

inventory control parameters.

Even from the limited range of cases examined, it emerges that

the question of whether the proper response to uncertainty is to raise or

lower inventory levels has no simple answer. Once learning began, it was

found to be worthwhile to tolerate higher probabilities of stockout in the

lead time, but this does not always translate into lower "s" values. For
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higher backorders cost parameters, it became cost effective to raise s to

partially offset the greater stockout risk created by uncertainty. Optimum

reorder quantities were insensitive to uncertainty at the lower uncertainty

level examined, but did drop at the higher level.

During pre-fielding there is uncertainty, but no immediate learning,

and the proper response was more likely to be to raise inventory levels,

although this also depended on the level of the backorder cost parameters,

and how close to fielding the item was. A heuristic based on ignoring uncertainty

performed satisfactorily at lower backorder cost parameters, but under-bought

seriously for higher settings.

Computer processing times would permit implementation of the algorithm

developed, at least for selected items when high speed computers were used

for inventory control. The current algorithm is somewhat limiting in its

assumptions, and we discussed why a more general model may be more feasibly

developed under the alternative dynamic programming formulation based on

a histogram prior. Our belief, however, is that the most promising path

for the future is to develop heuristics based on the dynamic programming

results and validated by sensitivity testing. Hopefully, such heuristics

would be less sensitive to correct assumptions about the exact distribution

of demand, the exact distribution of the prior, and the exact dynamics of

changes in the mean than a more exact model. The success of the Power Approxi-

mation provides some precedent for such a hope [5).
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TABLE 1. OPTIMUM (sQ) AT FIELDING

BR "€ 0=1/2 Y 1

EASE: 4 8/8 5/8 0/5

10 11/7 9/8 3/5

P 100 15/7 18/6 15/5

500 18/6 24/5 26/5

* L-26: 10 5/7 4/7 1/4

100 8/7 10/5 8/4

L-78: 10 16/8 14/8 4/6

100 22/7 26/7 22/6

UP-350: 10 9/13 7/13 1/10

100 14/12 16/11 12/10

UP-5600: 10 12/4 11/4 4/3

100 16/4 19/3 17/2

AYD-5, 10 5/6 5/5 1/4

100 9/5 10/4 9/4

AYD- 30 10 22/10 18/10 4/8

a 100 28/9 33/9 25/7
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TABLE 1 BACKUP. PROBABILITY OF STOCKOUT

BR y w 0  Y - 1/2 Y=l

BASE: 4 68.8% 77.0% 91.1%

10 32.5% 47.1% 68.8%

100 5.6% 9.5% 22.4%

500 0.9% 2.5% 7.3%

L-26: 10 41.8% 51.2% 70.3%

100 8.1% 7.8% 20.5%

L-78: 10 35.4% 46.5% 72.7%

100 3.7% 10.2% 23.1%

UP-350: 10 56.6% 62.3% 82.9%

100 9.4% 14.3% 29.6%

UP-5600: 10 22.7% 35.2% 62.6%

100 3.1% 7.7% 18.6%

AYD-5: 10 40.1% 38.5% 69.9%

100 3.5% 7.3% 16.7%

AYD-30: 10 31.0% 50.2% 78.7%

100 4.2% 12.2% 28.8%
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TABLE 2. OPTIMUM PRE-FIELDING ASSETS

BR Y - 0  Y = 1/2 Y 1
EI

BASE: 4 5; 13(-17); 4; 12(-24); 6;

10 6; 14(-23); 6; 15(-26); 5; 13(-35);

100 9; 17(-25); .11; 24(-27); 12; 29(-34);

500 9; 16(-29); 23(-7)'10; 20(-36);30(-18); 12; 26(-41); 42(-28);

L-26: 10 7; 8; 6;

100 7; 14(-6); 7; 14(-12); 14;

L-78* 10 6; 14(-49); 22(-13) 8; 21(-42) 7; 19(-53);

100 9; 17(-51); 25(-20) 1O;21(-56);34(-31); 11; 26(-62); 43(-43);

UP-350: 10 12; 14; 12;

100 16; 23; 28;

UP-5600: 10 4; 9(-34); 14(-13) 4; 9(-37); 15(-20); 4; 12(-37);

100 5;9(-41);13(-28); 6; 11(-41); 17(-30) 7; 16(-43); 28(-31);
18(-12) 24(-17);

AYD-5: 10 4; 9(-16); 4; 9(-21); 6;

100 6; 12(-20); 7; 14(-23); 7; 16(-33);

AYD-30: o '8; 18(-32); 29(-9) 11; 27(-28) 8; 23(-37)

100 11; 21(-34);32('14) 13; 27(-33); 43(-21) 14;32(-42);54(-30);
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TABLE 3. INCREASE IN COST

BR Y 0  Y - 1/2 Y - 1

BASE: 4 0.1% 1.3%

10 0.2% 0.3%

100 1.9% 8.4%

500 6.3% 48.8%

L-26: 10 0.0% 0.0%

100 0.4% 1.4%

L-78: 10 0.6% 1.8%

100 4.8% 21.1%

UP-350: 10 0.1% 0.0%

100 2.2% 8.1%

UP-5600: 10 0.2% 0.3%

100 2.5% 10.6%

AYD-5: 10 0.2% 0.0%

100 0.8% 4.5%

AYD-30: 10 0.4% 1.4%

100 3.6% 13.8%
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APPENDIX A

SUFFICIENT STATISTICS

A convenient reference for moat of this material is DeGroot (41.

Su-pose that we are sampling from a random variable X with probability

function (or probability density function if X is continuous) f(X;w), where

w is an unknown parameter. All the sample values we see are governed by

the same w, but w is the realization of a random variable W, with distribution

g(W), termed the prior.

Let X be the sample values, where 1v is used to denote a vector.

In accordance with the Bayesian approach to statistics, it is meaningful

to reference the updated prior g(W x), which reflects the changed probabilities

of what W might be after tiking into account the observed x, as well as the

original prior g(W).

A statistic T(x) is any function defined over all possible values

of X. A sufficient statistic is defined by the fact that g(WIT(x)) - g(W)Ilx)

for all possible values of x, where the equality must pertain only to values

of W with positive probability. There is always at least one sufficient

statistic, nawely Tx) = x, but we are interested in sufficient statistics

of fixed dimensionality; i.e., the dimensionality of T(x) does not increase

as sample size increases. An example of T(x) is the 2-dimensional vector

(n,E x i where n is the sample size end x i the sample values.

In the definition of a sufficient statistic the function g denotes

a mapping from the sample space to a probability space. Now suppose g can

be written as a mathematical formula with T(x) and the sample size as parameters;

also, suppose that if T(x,y) is the sufficient statistic after observing
S,'y) where x is n-dimensional and y is n-dimensional, then

g(WIT(x,y), n+m) = K g (WIT(x). n) g (WIT(y), m)

where K is a normalizing constant chosen so that the right hand side integrated

(or summed) over W equals one. The function g is then called a conjugate

prior to the distribution f(X;w).

It turns out that whenever there is a fixed dimensional sufficient

statistic, there is a conjugate prior. In Appendix B we treat explicitly

the Poisson conditional, f(X;w), and the Gamma conjugate.

f(X;w) is said to belong to the exponential family if for any possible

values of X,w, k

f(x;w) = a(w) b(x) exp 7 gM(w) hi(x)
i= 1
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For any member of the exponential family there is a sufficient statistic

of dimension k.

However, while the exponential family is very rich in that it encom-

passes many distributions, it is possible for the same distribution both

to be and not to be part of the exponential family[ Let us illustrate with

the Negative Binomial which is much used in Army inventory models.

The Negative Binomial may be written:
r~r+x r r (r+x) r

f(x;r,p) - r(r)r(x+l) p (1-p)x -M r(r)r(x+l)p exp[log(l-p)x]

Now if r is known, and p is the unknown parameter, the Negative Binomial

satisfies the condition for membership in the exponential family. However,

in an inventory context this would be an unlikely situation since r equals

the square of the mean divided by the difference between the variance and

mean. If, as is more likely, the p parameter is known, p being the reciprocal

of the variance to mean ratio, and r is unknown, f(X;r) does not satisfy

the condition for membership in the exponential family since r(r+x) cannot

be written as exp[g (r)bj(x)].
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APPENDIX B

MATHEMATICS FOR GAMMA-PnISSON

Bayesian Updating

A convenient reference for most of this material is Brown and Rogers

[31.

Write the Poisson, Gamma and Negative Binomial distributions as:

Poisson: f(d;x) - dl

ba  a-1 -bX
Gamma: g(%;a,b) a - e

r a)
r (a+d-1) b 1d

Negative Binomial: h[d;a,b/(b+l)] - r(d)r(a-1) (b 6 b+)

Then the following are the means and variances:

Mean Variance

Poisson X

Gamma a/b a/b2

2
Negative Binomial a/b a/b + a/b

Note the variance of the Negative Binomial is the variance of a Poisson with

mean a/b plus uncertainty a/b2 around the mean.

If demand in a period is Poisson, with urknown X sampled from a

Gamma prior, the distribution of demand allowing for uncertainty about A

is Negative Binomial:

h[d;a,b!(b+l)] IX g(X;ab) f(d;X)

If after n periods demands of d 1  d ...d are observed, then (nE d ) is
1' 2 n i

a sufficient statistic and the updated prior is a Gamma with revised parameters

a ao + E d i' bo = b + n; the distribution of demand in one period,
2

given (n, Yd i ) is Negative Binomial with mear a/b and variance a/b + a/b.

The distribution over p periods is Negative Binomial with mean ap/b and variance
2 2

ap /b + ap/b.

* We can redefine Y as the expected demand per weapon system per

period. Then if W are the number of systems deployed in period i we could

usp Lne above results with these substitutions:

n
Z is substituted for n

11+p
2. W is substituted for p

i n+l
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Computation of Functional Values

Let B be backorder cost per backorder per period and H. be holding

cost. Let f be as defined in Section 2.1. Capital letter functions ;re

from Chapter 3 and the f, g and h functions are as defined in this Appendix.

y
SaL h(dIt) + a b h(d1t )(d-)

f 2 (y~t ) 
Ltn) n )  B h(d t )y

d=o d=y+l

h(dtn)(Y-d) h(dit )(y-d) - I h(dlc)(Y-d)5+1 nd-o n d -o n"

y
= y - Expected Value (dit) - F h(dt n)(y-d)n tn-".

d=o
P

B(x;P,i) = B E 3P f(d;i )(d-x) i = (M)(p)c PP
p l dx+l

P x
H(x;P,i) - H E F aPf(d;i )(x-d)

pCl d=o

For G(x;i) and H(x;,,i) we assume costs are recorded continuously
-et -ci

with a discount of e where t is the elapsed time in periods and e -

a. Thus, for p periods, the discount is e = (e ) = a

Now if demand is Poisson with mean of i per period, the time to
2 2

order x units is Gamma with mean x/i and variance x/i from which we may
3

infer that the Gamma parameters are a = x and b = i. Therefore,

-t i x  X-1 0(+0) t
G(x;i) f eci g(t;x,i)dt = i -xt e + dt

0 0 X.

i r Li4j x-i -(m4-i) t X-
r(x) t e t = (-L-)

0

since the last integral is the integral of a Gamma density over its range.

Now suppose we numbered (conceptually) x assets from 1 to x with

2This well known result follows from the 'act that Poisson demand implies
exponential time between demand, and the sum of independent exponentials
is Gamma.

The use of the Gamma as shown here was suggested by Karl Kruse [9)
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th
asset 1 issued first and so on. Suppose the k asset is issued at time

t. Total holding costs for the kth asset would be:

t I
11 f e -  die-t]

Since t is a random variable with distribution g(t;k,i),

H x - t
lI(x;cr,i) =~ c f g(t;k,i) [1 - e ]

k=l o
x k

a k=1

Hc[ (r)(rX-)]

r-1

A continuous analogue of B(Q) was used in determining the optimum

"s" and developing L,(s,s+Q;i). Recall

B(Q) B(s;L,i) - B(s+Q;L,i)

Consider each of the Q units separately and index them by k. Let tk be the

time until the k of the Q assets is demanded measured from the time the
th

order is placed. For the k of the Q assets to be demanded, there must

be (s+k) demands, so the density on L is g(tk; s+k, i). If t occurs before

L there is a backorder and total backorder cost for that backorder is:
L -ttk e-aL

B f e- tdt = B [e -

tk

Thus,
0 L

____ -at cLL
B f g(t;s+k,i) [e - e ]

c k= 1o

Now,
L s q+k L

f g(t;s+k,i) e = f g(t;s+k,i+a)
o 0

s+k

(i-a-- [1 - F(s+k-1; (1+a)L)]

where F(s+k-l;(i-o)L) is the probability a Poisson random variable with mean

(i+ )L is k - I; i. . t L is equivalent t o s + k demands by time

L.
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Putting all these results together,

9 i ) s+k
B = (-) [1 - F(s+k-1; (i+a)L)]

c k=l

-cL
- e Z [I- F(s+k-l;i L)]

k=l

Application of Functional Values.

The various functional values H( ) and B( ) are used to derive

the L(s,s+Q,i) and then the CM (x,t) as discussed in the section of the report

on Starting the Recursion. Then the recursive equation is used.
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APPENDIX C

ALGORITIi PRECISION AND PROCESSING TIMES

Precision. The issues investigated briefly were:

(1) In the formula from Section 2.2 for tmax , what should

PSDFV be multiplied by?

(2) In approximating the Gamma prior by a histogram, how many points

should be used (Section 3.0)?

(3) How much accuracy would be lost if we limited the number of values

of the sufficient statistic for which costs were calculated, and found the

rest by linear interpolation?

Four runs were made for the base case with Y = 1.0 and BR 1 100

(see model results for n description of the base case). The first and second

runs multiplied PSDEV by 4 and used 10 histogram points, but the second

run calculated costs for a maximum of 30 values of the sufficient statistic

in any given period. At period 52, there were (coincidentally). 52 values

so that 22 were found by interpolation. Run 3 differed from run 1 in that

PSDEV was multiplied by 5, while run 4 differed from run I in that only 5

points were used for the histogram in starting the recursion.

Our conclusions were that Run 1 settings were adequate and that

interpolation might be practical. We recorded for each run the (s,S) values

at fielding and a lead tine before fielding. They were the same for each

run, (15-20) and (0,12) respectively. At fielding we recorded the expected

lifetime costs (in t ousands) if' assets were 1 unit and you ordered up to

either 13. 14, 15 .... 21, or 22 (Table C.1). A lead time before fielding

we recorded expected cost if assets were 0 and you ordered up to 8, 9, 10...15,

16 units. We focused on how the costs changed as a function of assets bought,

looking at asset values around the inventory control parameters selected.

Processing Times

The algorithm was run on a CDC CYBER 76 computer under the SCOPE

2.1.5 operating systenm. For the base case, with BR 1 100 and Y = 1.0, 17.5

CPU seconds were used. For Run 2, using interpolation, CPU seconds dropped

to 13.4 seconds. Of the 17.5 CPU seconds for Run 1, approximately 4.5 were

used to get through the "Starting the Recursion" step.
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TABLE C.1. COMPARISON OF EXPECTED COSTS (AT FIELDING)

RUN ORDER TO:

13 14 15 16 17 18 19 20 21 22

1 $89.7 $88.1 $86.4 $84.8 $83.2 $81.7 $80.2 $78.8 $77.4 $76.1

2 89.9 88,3 86,6 84,9 83,4 81.9 80.4 79.0 71.6 76.3

3 90.3 88.7 87.0 85.3 83.8 82.3 80.8 79.4 78.0 76.7

4 89.3 87.7 86.0 84.4 82.8 81.3 79.8 78.4 77.1 75.7

TABLE C.2. COMPARISON OF EXPECTED COST (AT FIRST BUY)

RUN ORDER TO:

8 7 10 11 12 13 14 15 16

I $87.4 $86.0 $84.5 $83.1 $81.7 $80.3 $78.9 $77.6 $76.2

2 87.6 86.2 84.8 83.3 81.9 80.5 79.2 77.8 76.4

3 87.9 86.5 85.0 83.6 82.2 80.8 79.4 79.0 76.7

4 Not Recorded
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APPENDIX D

PRE-FIELDING HEURISTIC

Suppose we wish to order every QT (for Q Time) weeks, and for a

moment assume we order whenever assets fall below lead time demand.

Then, we draw a time line as follows:

_qT WEEKS (L+1) WEEKS I
PRESENT

If we order up to our .xpected demand in the next (QT4L+I) weeks, and demand

occurs as expected, we will order next in QT-weeks. If 'present" is pre-fielding,

some uf the weeks on the time line will occur before fielding and we add

in zeroes for those weeks.

Now suppose the reorder point (the s value) is based on lead time

demand plus "n" standard deviation., and that based on the Poisson assumption

the standard deviation is the square root of the mean. Then we must add

to our order-up-to level "n" multiplied by the square root of demand in the

(L+l) weeks shown on the time line.

The heuristic takes as input the (s,Q) values found to be optimum

at time 0 (just before fielding) for the case with no uncertainty. Frou,

these it compuLs "n" and QT and app] les them as discussed to get the order-up-to

level at any time prior to fielding.

For the purpose of getting the reorder point (a), a different time

line is developed:

(L+lO WEEKS T 7EEKS

PRESENT

Now demand in the first (L+I) we.eks is used to get s, since this determineb

exposure to backorders in the lead time. This is still consistent with the

derivation of the order-up-to level, since that derivation absumed that in

QT weeks the s value would be based on demand in the next (L+l) weeks counting

from that point.
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